Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.686
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612686

RESUMO

Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.


Assuntos
Streptomyces , Toiocamicina , Sistemas do Segundo Mensageiro , Engenharia Genética , Streptomyces/genética
2.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471818

RESUMO

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Vibrio cholerae , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540769

RESUMO

Cyclic dinucleotides (CDNs) are cyclic molecules consisting of two nucleoside monophosphates linked by two phosphodiester bonds, which act as a second messenger and bind to the interferon gene stimulating factor (STING) to activate the downstream signaling pathway and ultimately induce interferon secretion, initiating an anti-infective immune response. Cyclic dinucleotides and their analogs are lead compounds in the immunotherapy of infectious diseases and tumors, as well as immune adjuvants with promising applications. Many agonists of pathogen recognition receptors have been developed as effective adjuvants to optimize vaccine immunogenicity and efficacy. In this work, the binding mechanism of human-derived interferon gene-stimulating protein and its isoforms with cyclic dinucleotides and their analogs was theoretically investigated using computer simulations and combined with experimental results in the hope of providing guidance for the subsequent synthesis of cyclic dinucleotide analogs.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Humanos , Proteínas de Membrana/metabolismo , Sistemas do Segundo Mensageiro , Interferons , Transdução de Sinais , Adjuvantes Imunológicos
4.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407149

RESUMO

Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.


"Ouch!": you have just stabbed your little toe on the sharp corner of a coffee table. That painful sensation stems from nerve cells converting information about external forces into electric signals the brain can interpret. Increasingly, new evidence is suggesting that this process may be starting at fat-based structures within the membrane of these cells. The cell membrane is formed of two interconnected, flexible sheets of lipids in which embedded structures or molecules are free to move. This organisation allows the membrane to physically respond to external forces and, in turn, to set in motion chains of molecular events that help fine-tune how cells relay such information to the brain. For instance, an enzyme known as PLD2 is bound to lipid rafts ­ precisely arranged, rigid fatty 'clumps' in the membrane that are partly formed of cholesterol. PLD2 has also been shown to physically interact with and then activate the ion channel TREK-1, a membrane-based protein that helps to prevent nerve cells from relaying pain signals. However, the exact mechanism underpinning these interactions is difficult to study due to the nature and size of the molecules involved. To address this question, Petersen et al. combined a technology called super-resolution imaging with a new approach that allowed them to observe how membrane lipids respond to pressure and fluid shear. The experiments showed that mechanical forces disrupt the careful arrangement of lipid rafts, causing PLD2 and TREK-1 to be released. They can then move through the surrounding membrane where they reach a switch that turns on TREK-1. Further work revealed that the levels of cholesterol available to mouse cells directly influenced how the clumps could form and bind to PLD2, and in turn, dialled up and down the protective signal mediated by TREK-1. Overall, the study by Petersen et al. shows that the membrane of nerve cells can contain cholesterol-based 'fat sensors' that help to detect external forces and participate in pain regulation. By dissecting these processes, it may be possible to better understand and treat conditions such as diabetes and lupus, which are associated with both pain sensitivity and elevated levels of cholesterol in tissues.


Assuntos
Gangliosídeo G(M1) , Transdução de Sinais , Animais , Camundongos , Sistemas do Segundo Mensageiro , Membrana Celular , Colesterol , Mamíferos
5.
Bioresour Technol ; 398: 130479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395232

RESUMO

Efficient quorum sensing (QS) response is the premise for recovering the activities of stored aerobic granular sludge (AGS). This study aims to explore the crosstalk between the secondary messenger and the N-acylated-homoserine lactones (AHLs) to yield protein-rich granules efficiently from stored AGS by enhancing its QS efficiency selectively. 80 nmol/L cyclic diguanylate (c-di-GMP) with 20 nmol/L AHLs could increase the activity of isocitrate lyase activity (ICD) by 89 % and isocitrate dehydrogenase activity (ICDHc) by 113.5 %, to accelerate the tricarboxylic acid (TCA) cycle for yielding excess proteins by 166.4 %. In contrast, 80 nmol/L autoinducer-2 (AI-2) with 20 nmol/L AHLs could increase the activities of ICD and ICDHc by 485 % and 54.5 %, respectively, accelerating the glyoxylate (GCA) cycle to activate fat acid synthesis for stimulating polysaccharides (PS) secretion by 137.9 %. The strategy with c-di-GMP successfully recovers the refrigerated-stored and dried-stored AGS into proteins-rich AGS, with enriched functional strains for the PN secretion.


Assuntos
Acil-Butirolactonas , Homosserina/análogos & derivados , Esgotos , Acil-Butirolactonas/metabolismo , Percepção de Quorum , Lactonas , Sistemas do Segundo Mensageiro
6.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340793

RESUMO

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Transcrição Gênica , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum , Sistemas do Segundo Mensageiro , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
7.
Biochem Soc Trans ; 52(1): 191-203, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334148

RESUMO

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.


Assuntos
Cálcio , Imageamento Hiperespectral , AMP Cíclico , Sistemas do Segundo Mensageiro , Transdução de Sinais , Transferência Ressonante de Energia de Fluorescência/métodos
8.
Methods Mol Biol ; 2766: 177-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270878

RESUMO

The Ca2+ ion is an important second messenger in lymphocytes, similarly to its function in other mammalian cells. The generation of long-lasting intracellular Ca2+ elevations is essential for Ca2+-dependent gene transcription, proliferation, differentiation, and cytokine production in lymphocytes. Since store-operated Ca2+ entry (SOCE) is considered the predominant mode of Ca2+ influx in lymphocytes, the activation and function of lymphocytes can be generally predicted by monitoring SOCE. A method suitable for dynamic monitoring of Ca2+ influx using fura-2 labeling in lymphocytes is introduced in this chapter. Using this technique, large-scale screening of the activation status of primary or cultured lymphocytes can be realized.


Assuntos
Linfócitos , Sistemas do Segundo Mensageiro , Animais , Diferenciação Celular , Fura-2 , Mamíferos
9.
Nature ; 625(7996): 797-804, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200316

RESUMO

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Potenciais da Membrana , Staphylococcus aureus , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Nucleotídeos Cíclicos/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Sistemas do Segundo Mensageiro , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia
10.
BMC Microbiol ; 24(1): 25, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238663

RESUMO

BACKGROUND: Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE: This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS: P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS: orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION: orn regulates the ability of P. aeruginosa to adapt to the external environment.


Assuntos
Proteínas de Bactérias , Exorribonucleases , Pseudomonas aeruginosa , Humanos , Animais , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Biofilmes , Regulação Bacteriana da Expressão Gênica
11.
J Leukoc Biol ; 115(3): 511-524, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37952106

RESUMO

Tissue infiltration by circulating leukocytes via directed migration (also referred to as chemotaxis) is a common pathogenic mechanism of inflammatory diseases. G protein-coupled receptors (GPCRs) are essential for sensing chemokine gradients and directing the movement of leukocytes during immune responses. The tumor necrosis factor α-induced protein 8-like (TIPE or TNFAIP8L) family of proteins are newly described pilot proteins that control directed migration of murine leukocytes. However, how leukocytes integrate site-specific directional cues, such as chemokine gradients, and utilize GPCR and TIPE proteins to make directional decisions are not well understood. Using both gene knockdown and biochemical methods, we demonstrated here that 2 human TIPE family members, TNFAIP8 and TIPE2, were essential for directed migration of human CD4+ T cells. T cells deficient in both of these proteins completely lost their directionality. TNFAIP8 interacted with the Gαi subunit of heterotrimeric (α, ß, γ) G proteins, whereas TIPE2 bound to PIP2 and PIP3 to spatiotemporally control immune cell migration. Using deletion and site-directed mutagenesis, we established that Gαi interacted with TNFAIP8 through its C-terminal amino acids, and that TIPE2 protein interacted with PIP2 and PIP3 through its positively charged amino acids on the α0 helix and at the grip-like entrance. We also discovered that TIPE protein membrane translocation (i.e. crucial for sensing chemokine gradients) was dependent on PIP2. Collectively, our work describes a new mechanistic paradigm for how human T cells integrate GPCR and phospholipid signaling pathways to control directed migration. These findings have implications for therapeutically targeting TIPE proteins in human inflammatory and autoimmune diseases.


Assuntos
Sistemas do Segundo Mensageiro , Transdução de Sinais , Humanos , Animais , Camundongos , Quimiocinas , Aminoácidos , Lipídeos , Peptídeos e Proteínas de Sinalização Intracelular
12.
Nucleic Acids Res ; 52(1): 462-473, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033326

RESUMO

Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.


Assuntos
Proteínas Associadas a CRISPR , Endorribonucleases , Thermoanaerobacter , Sítios de Ligação , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Endorribonucleases/metabolismo , RNA/metabolismo , Sistemas do Segundo Mensageiro , Thermoanaerobacter/enzimologia , Thermoanaerobacter/metabolismo
13.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37474759

RESUMO

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Assuntos
Transdução de Sinais , Peixe-Zebra , Camundongos , Animais , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Miócitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
14.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069339

RESUMO

3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Sistemas do Segundo Mensageiro , AMP Cíclico , Miócitos Cardíacos/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo
15.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138485

RESUMO

In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.


Assuntos
GMP Cíclico , Sistemas do Segundo Mensageiro , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Bactérias , AMP Cíclico , Nucleotídeos Cíclicos , Proteínas de Bactérias
16.
Front Immunol ; 14: 1273248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965345

RESUMO

Pulmonary fibrosis is a progressive and ultimately fatal lung disease, exhibiting the excessive production of extracellular matrix and aberrant activation of fibroblast. While Pirfenidone and Nintedanib are FDA-approved drugs that can slow down the progression of pulmonary fibrosis, they are unable to reverse the disease. Therefore, there is an urgent demand to develop more efficient therapeutic approaches for pulmonary fibrosis. The intracellular DNA sensor called cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays a crucial role in detecting DNA and generating cGAMP, a second messenger. Subsequently, cGAMP triggers the activation of stimulator of interferon genes (STING), initiating a signaling cascade that leads to the stimulation of type I interferons and other signaling molecules involved in immune responses. Recent studies have highlighted the involvement of aberrant activation of cGAS-STING contributes to fibrotic lung diseases. This review aims to provide a comprehensive summary of the current knowledge regarding the role of cGAS-STING pathway in pulmonary fibrosis. Moreover, we discuss the potential therapeutic implications of targeting the cGAS-STING pathway, including the utilization of inhibitors of cGAS and STING.


Assuntos
Fibrose Pulmonar , Humanos , Cromogranina A , DNA , Nucleotidiltransferases , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Sistemas do Segundo Mensageiro , Transdução de Sinais
17.
Nat Commun ; 14(1): 7502, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980414

RESUMO

Cyclic di-GMP (c-di-GMP) is a second messenger that transduces extracellular stimuli into cellular responses and regulates various biological processes in bacteria. H-NS is a global regulatory protein that represses expression of many genes, but how H-NS activity is modulated by environmental signals remains largely unclear. Here, we show that high intracellular c-di-GMP levels, induced by environmental cues, relieve H-NS-mediated transcriptional silencing in Salmonella enterica serovar Typhimurium. We find that c-di-GMP binds to the H-NS protein to inhibit its binding to DNA, thus derepressing genes silenced by H-NS. However, c-di-GMP is unable to displace H-NS from DNA. In addition, a K107A mutation in H-NS abolishes response to c-di-GMP but leaves its DNA binding activity unaffected in vivo. Our results thus suggest a mechanism by which H-NS acts as an environment-sensing regulator in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Salmonella typhimurium/metabolismo , Regulação Bacteriana da Expressão Gênica
19.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996405

RESUMO

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Assuntos
Guanosina Monofosfato , Ralstonia solanacearum , Humanos , Virulência , Ralstonia solanacearum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Regulação Bacteriana da Expressão Gênica , Biofilmes
20.
Nat Commun ; 14(1): 7239, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945601

RESUMO

The mycobacterial repressor, DarR, a TetR family regulator (TFR), was the first transcription regulator shown to bind c-di-AMP. However, the molecular basis for this interaction and the mechanism involved in DNA binding by DarR remain unknown. Here we describe DarR-c-di-AMP and DarR-DNA structures and complementary biochemical assays. The DarR-c-di-AMP structure reveals a unique effector binding site for a TFR, located between DarR dimer subunits. Strikingly, we show this motif also binds cAMP. The location of the adenine nucleotide binding site between subunits suggests this interaction may facilitate dimerization and hence DNA binding. Indeed, biochemical assays show cAMP enhances DarR DNA binding. Finally, DarR-DNA structures reveal a distinct TFR DNA-binding mechanism involving two interacting dimers on the DNA. Thus, the combined data unveil a newly described second messenger binding motif and DNA binding mode for this important family of regulators.


Assuntos
DNA , Sistemas do Segundo Mensageiro , Ligação Proteica , Sítios de Ligação , DNA/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...